
Application of the exact quantization rule to the relativistic solution of the rotational Morse

potential with pseudospin symmetry

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2007 J. Phys. A: Math. Theor. 40 1677

(http://iopscience.iop.org/1751-8121/40/7/016)

Download details:

IP Address: 171.66.16.147

The article was downloaded on 03/06/2010 at 06:32

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1751-8121/40/7
http://iopscience.iop.org/1751-8121
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL

J. Phys. A: Math. Theor. 40 (2007) 1677–1685 doi:10.1088/1751-8113/40/7/016

Application of the exact quantization rule to the
relativistic solution of the rotational Morse potential
with pseudospin symmetry

Wen-Chao Qiang1, Run-Suo Zhou2 and Yang Gao3

1 Faculty of Science, Xi’an University of Architecture and Technology, Xi’an, 710055,
People’s Republic of China
2 Department of Nuclear Medicine, TangDu Hospital, The Fourth Military Medical University,
Xi’an 710038, People’s Republic of China
3 Xi’an Microelectronics Technology Institute, Xi’an 710054, People’s Republic of China

E-mail: qwcqj@pub.xaonline.com

Received 31 October 2006, in final form 29 December 2006
Published 30 January 2007
Online at stacks.iop.org/JPhysA/40/1677

Abstract
We present an analytical solution of the radial Dirac equation for the rotational
Morse potential through the Pekeris approximation. The bound state energy
eigenvalues are obtained by using an exact quantization rule for non-zero κ

values of the Dirac equation. As an application of the rule, we give the
numerical solutions of the results for special values of the potential parameters.

PACS numbers: 03.65.Ge, 03.65.Pm, 34.20.Cf, 31.30.Jv

1. Introduction

The Morse potential has attracted a great deal of interest as an important and basic model for
describing the interaction between two atoms in a diatomic molecule [1–7]. It is well known
that there are no analytical solutions for the rotational Morse potential for the Schrödinger
equation with l �= 0 or for the Dirac equation with κ �= 0, so various approximations are
employed to derive numerical or quasi-analytical solutions. For example, Killingbeck et al
[4] treat the full problem of the Morse potential with angular momentum. Their method
first finds the minimum x = x0 of the effective potential V , then forms the Taylor series
expansion of V at the minimum. Finally, hypervirial perturbation is applied to obtain the
numerical eigenvalues [4]. This method can only be used to get a numerical solution, and
for a quasi-analytical solution an efficient approximate method, the Pekeris approximation
is widely used. Recently, Morales, Bayrak et al and Berkdemir all employed the frame of
the Pekeris approximation, but with different approaches. Morales used the supersymmetric
quantum mechanics (SQM) approach [8], Bayrak the asymptotic iteration method (AIM) [9]
and Berkdemir the Nikiforov–Uvarov (NU) method [10]. Then, Berkdemir further studied the
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relativistic rotational Morse potential with pseudospin symmetry by the Pekeris approximation
and the NU method [11]. The pseudospin symmetry results from the near equality in the
magnitude of an attractive scalar −S and repulsive vector V , both relativistic mean fields,
S ∼ V , in which the nucleons move. This approach involves a division of the single particle
total angular momentum into pseudo rather than normal orbital and spin parts. The concept,
j = l̃ ± s̃, is expressed in terms of a pseudo-orbital angular momentum l̃ = l + 1 which is
coupled to a pseudo-spin s̃ = 1/2 [12–14].

On the other hand, recently, Ma and Xu proposed an exact quantization rule [15, 16] by
which they obtained the eigenvalues for a one-dimensional finite square well, the harmonic
oscillator potential, Morse potential, asymmetric Rosen–Morse potential, first and second
Pöschl–Teller potential, as well as the three-dimensional harmonic oscillator and hydrogen
atom. Employing this approach, Qiang and Dong also found arbitrary l-state solutions of the
rotating Morse potential with the Pekeris approximation [17]. These results show that the
exact quantization rule can be efficiently used to obtain the exact bound-state solutions for
most solvable potentials. It must be pointed out that the Hankel quantization condition arising
from the Riccati–Padé method also has made much use of the logarithmic approach, but the
method is only available for numerical work [18].

Now, although there are no exact quantization rules for the Dirac equation, by transforming
it into a Schrödinger-like equation we can still use the exact quantization rule to solve
relativistic eigenvalue problems. In this paper we will use Ma’s exact quantization rule
to derive arbitrary κ-state solutions to the Dirac equation for the rotational Morse potential
with pseudo-spin symmetry within the Pekeris approximation. In the following section, the
exact quantization rule is introduced. Then, in section 3, we apply this method to obtain the
exact energy eigenvalues. Some details about this study are discussed in section 4. Finally,
some concluding remarks are given in section 5.

2. Exact quantization rule

We first give a brief review of the exact quantization rule. Ma et al have proved that the
one-dimensional Schrödinger equation

d2

dx2
ψ(x) = −2M

h̄2 [E − V (x)]ψ(x) (1)

can be written as
d

dx
φ(x) = −2M

h̄2 [E − V (x)] − φ(x)2, (2)

where φ(x) = ψ(x)−1 dψ(x)/dx is the logarithmic derivative of the wavefunction ψ(x),M

represents the mass of the particle and the potential V (x) is a piecewise continuous real
function of the x. Furthermore, it is known from the Sturm–Liouville theorem that φ(x)

decreases monotonically with respect to x between two turning points, where E � V (x).
Specifically, as x increases across a node of the wavefunction ψ(x), where E � V (x), φ(x)

decreases to −∞, jumps to +∞, and then decreases again. By carefully studying the one-
dimensional Schrödinger equation they proposed an exact quantization rule∫ xB

xA

k(x) dx = Nπ +
∫ xB

xA

φ(x)

[
dk(x)

dx

] [
dφ(x)

dx

]−1

dx, (3)

where k(x) = √
2M[E − V (x)]/h̄, xA and xB are two turning points determined by E = V (x)

and xA < xB,N is the number of nodes of φ(x) in the region E � V (x) and is larger by 1
than the number of nodes of the wavefunction ψ(x). In addition, the quantization rule (3)
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can be easily generalized to the three-dimensional Schrödinger equation with a spherically
symmetric potential. For example, if we take ψ(r) = r−1R(r)Y l

m(θ, φ), we are able to obtain
the radial Schrödinger equation as

d2

dr2
R(r) = −2M

h̄2 [E − U(r)]R(r), U(r) = l(l + 1)h̄2

2Mr2
+ V (r). (4)

Since equation (4) is similar to equation (1), the quantization rule (3) can be generalized to
the three-dimensional Schrödinger equation case∫ rB

rA

k(r) dr = Nπ +
∫ rB

rA

φ(r)

[
dk(r)

dr

] [
dφ(r)

dr

]−1

dr. (5)

In the above equation, the first term Nπ is the contribution from the nodes of the wavefunction,
and the second one is called the quantum correction. Ma and Xu have found that this quantum
correction is independent of the number of nodes of the wavefunction for the exactly solvable
systems. Thus, it can be replaced in equation (5) by∫ r0B

r0A

φ0(r)

[
dk0(r)

dr

] [
dφ0(r)

dr

]−1

dr, (6)

where subscript 0 denotes the ground state. Up to now, Ma’s exact quantization rule has not
yet been extended to the Dirac equation, but we can still use it to solve relativistic eigenvalue
problems.

3. Calculation of the energy eigenvalues by the exact quantization rules and the Pekeris
approximation

For simplicity, how to derive the radial equation of the Dirac equation with pseudospin
symmetry is ignored since a detailed discussion can be found in [11–13]. The radial parts
of the Dirac equation with spherical symmetry are a set of two coupled ordinary differential
equations (

d

dr
+

k

r

)
Fnk(r) = [µ + Enk − �(r)] Gnk(r),(

d

dr
− k

r

)
Gnk(r) =

[
µ − Enk +

∑
(r)

]
Fnk(r),

(7)

where k = ±(j+1/2) is the eigenvalue of K = −β(
−→
σ .

−→
L +1), j is the total angular momentum

of the system under consideration, Enk is the energy eigenvalue, �(r) = V (r)−S(r),
∑

(r) =
V (r)+S(r), and V (r) and S(r) are the repulsive vector potential and attractive scalar potential,
respectively. Equation (7) can be decoupled to two second-order differential equations for Fnk

and Gnk , respectively,(
d2

dr2
− k(k − 1)

r2
− (µ + Enk − �(r))

(
µ − Enk +

∑
(r)

)
−

d
∑

dr

(
d
dr

− k
r

)
µ − Enk +

∑
(r)

)
Gnk(r)= 0,

(
d2

dr2
− k(k + 1)

r2
− (µ + Enk − �(r))

(
µ − Enk +

∑
(r)

)
+

d�
dr

(
d
dr

+ k
r

)
µ + Enk − �(r)

)
Fnk(r) = 0.

(8)



1680 W-C Qiang et al

In the case of exact pseudospin symmetry when d
∑

/dr = 0, i.e.,
∑ = C = const, the

equation about Gnk(r) becomes(
d2

dr2
− k(k − 1)

r2
+ (µ − Enk + C)�(r) +

(
E2

nk − µ2 − C(µ + Enk)
))

Gnk(r) = 0. (9)

In this work we assume that �(r) takes the form of the Morse potential,

U(r) = D(e−2a(r−r0) − 2 e−a(r−r0)), (D > 0, a > 0), (10)

where D is the dissociation energy, r0 is the equilibrium distance (bound length) and a is a
parameter to control the width of the potential well. Generally speaking, equation (9) with
�(r) = U(r) has no analytical solution for k �= 0. Therefore, an approximation has to
be made. The most widely used and convenient one is the Pekeris approximation. This
approximation is based on the expansion of the centrifugal barrier in a series of exponentials
depending on the internuclear distance, keeping terms up to second order. It should be pointed
out, however, that this approximation is valid only for low vibrational energy states. In the
Pekeris approximation, the centrifugal potential can be approximately written as [11]

Ṽk(r) = k(k − 1)

r2
= γ (D0 + D1 e−αx + D2 e−2αx), (11)

with

D0 = 1 − 3

α
+

3

α2
, D1 = 4

α
− 6

α2
, D2 = − 1

α
+

3

α2
, (12)

and

γ = k(k − 1)

r2
0

, α = ar0, x = r − r0

r0
. (13)

From equations (11)–(13), equation (9) now becomes(
d2

dx2
− r2

0 γ (D0 + D1 e−αx + D2 e−2αx) + ν2(e−2αx − 2 e−αx) + ω2

)
Gnk(x) = 0, (14)

where

ν2 = r2
0 D(µ − Enk + C), ω2 = r2

0

(
E2

nk − µ2 − C(µ + Enk)
)
. (15)

After introducing the following notation

ε = −
√

r2
0 D0γ − ω2,

β1 =
√

−(
r2

0 D1γ + 2ν2
)
,

β2 =
√

r2
0 D2γ − ν2,

Veff(x) = −(
β2

1 e−αx − β2
2 e−2αx

)
,

(16)

equation (14) can be expressed as(
d2

dx2
− (ε2 + Ṽeff(x))

)
Gnk(x) = 0. (17)
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Now we can apply the quantization rule in equation (5) to the effective potential Ṽeff(x). For
this purpose, we first solve the Riccati equation

d

dx
φ0(x) = −(−ε2

0 − Ṽeff(x)
) − φ0(x)2. (18)

Introducing a new variable of the form y = e−αx and using equation (16), we obtain

αy
d

dy
φ0(y) − (−ε2

0 − Ṽeff(y)
) − φ0(y)2 = 0. (19)

We note that r ∈ (0,∞), x ∈ (−1,∞) and y ∈ (eα, 0); therefore while φ0(x) decreases as x
increases, φ0(y) increases as y increases. The solution with one node and no pole only has
the form φ0(y) = ay + b, where a > 0 due to the monotonic property. Substituting this trial
solution into the Riccati equation (19) we obtain

ε0 = ±1

2

(
α − β2

1

β2

)
, b = −β2

1 − αβ2

2β2
, a = β2 > 0. (20)

Hence

φ0(y) = β2y − β2
1 − αβ2

2β2
,

Ṽeff(y) = −(
β2

1y − β2
2y2

)
,

k0(y) =
√

−ε2
0 − Ṽeff(y) = β2

√
(y0a − y)(y − y0b),

(21)

where

y0a =
β2

1 +
√

αβ2
(
2β2

1 − αβ2
)

2β2
2

, y0b =
β2

1 −
√

αβ2
(
2β2

1 − αβ2
)

2β2
2

. (22)

We can now calculate the quantum correction,∫ x0b

x0a

φ0(x)

[
dk0(x)

dx

] [
dφ0(x)

dx

]−1

dx

= 1

α

∫ y0a

y0b

1

y
φ0(y)

[
dk0(y)

dy

] [
dφ0(y)

dy

]−1

dy

= 1

4α

∫ y0a

y0b

−4β2y
2 + 2y

[−α + β2
1

β2
+ (y0a + y0b)β2

]
+ (y0a+y0b)(−β2

1 +αβ2)

β2

y
√

(y0a − y)(y − y0b)
dy

= − β2

α

∫ y0a

y0b

y√
(y0a − y)(y − y0b)

dy

+
−α + β2

1
β2

+ (y0a + y0b)β2

2α

∫ y0a

y0b

1√
(y0a − y)(y − y0b)

dy

+
(y0a + y0b)

(−β2
1 + αβ2

)
4αβ2

∫ y0a

y0b

1

y
√

(y0a − y)(y − y0b)
dy

= π(−y0a − y0b + 2
√

y0ay0b)
(
β2

1 − αβ2
)

4αβ2
√

y0ay0b

= π

(
−1

2
+

β2
1

αβ2

)
, (23)
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where the condition β2 > 0, β2
1 − αβ2 < 0 and following formulae have been used:∫ b

a

y√
(y − a)(b − y)

dy = π

2
(a + b),∫ b

a

1√
(y − a)(b − y)

dy = π,∫ b

a

1

y
√

(y − a)(b − y)
dy = π√

ab
.

(24)

Second, we calculate the left side of equation (5) for the effective potential Ṽeff(y). For
simplicity, we write k(y) as follows:

K(y) =
√

−ε2 + β2
1y − β2

2y2 = β2

√
(ya − y)(y − yb). (25)

Here equations (12) and (15) have been used, and ya = e−αxa and yb = e−αxb are two turning
points, determined by E − Ṽeff(y) = 0 and ya > yb, so that

y± =
β2

1 ±
√

β4
1 − 4β2

2ε2

2β2
2

, (26)

where y± correspond to ya and yb, respectively. Now, it is easy to see that∫ xb

xa

k(x) dx = β2

α

∫ yb

ya

1

y

√
(ya − y)(y − yb) dy

= β2

α

(
π

2
(ya + yb) − π

√
yayb

)
= π

(
β2

1 + 2β2ε
)

2αβ2
, (27)

where the condition β2 > 0, ε < 0 and following formula have been used:∫ b

a

1

y

√
(y − a)(b − y) dy = π

2
(a + b) − π

√
ab. (28)

Substituting equations (23) and (27) into equation (5), we finally obtain

−β2
1 − 2β2ε

αβ2
= 2n + 1, (29)

where N = n + 1 has been used and n is the number of nodes of the wavefunction Gnk(y).
Using the notation of [11] we obtain

ε1 = ω2

α2
− r2

0 D0γ

α2
, ε2 = 2ν2

α2
+

r2
0 D1γ

α2
, ε3 = ν2

α2
− r2

0 D2γ

α2
. (30)

It is easy to find the relationship between our notation and that of [11]:

ε = −α
√−ε1, β1 = α

√−ε2, β2 = α
√−ε3. (31)

Using ε1, ε2 and ε3, equation (29) becomes

−2
√−ε1 +

ε2√−ε3
= 2n + 1. (32)

We note that
√−ε1 = ±i

√
ε1 and

√−ε3 = ±i
√

ε3, so to avoid getting an equation which has
no solution for energy E we must choose

√−ε1 = −i
√

ε1 and
√−ε3 = −i

√
ε3. This allows

equation (32) to be written in the following form:

−
(

2
√

ε1 +
ε2√
ε3

)
= (2n + 1)i, (33)
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Table 1. Relativistic energy eigenvalues in units of fm−1 of the pseudospin-symmetry Morse
potential using the exact quantization rule method for various values of n and k. For a special case,
C = −10 fm−1.

l̃ n, k < 0 (l, j) En,k<0 n − 1, k > 0 (l + 2, j + 1) En−1,k>0

1 1, −1 (1s1/2) −0.006 4123 0, 2 (0d3/2) −0.006 4123
2 1, −2 (1p1/2) −0.015 5771 0, 3 (0f5/2) −0.015 5771
3 1, −3 (1d1/2) −0.024 3659 0, 4 (0g7/2) −0.024 3659
4 1, −4 (1f1/2) −0.030 5297 0, 5 (0h9/2) −0.030 5297
1 2, −1 (2s1/2) −0.007 0204 1, 2 (1d3/2) −0.007 0204
2 2, −2 (2p3/2) −0.019 0441 1, 3 (1f5/2) −0.019 0441
3 2, −3 (2d5/2) −0.033 7719 1, 4 (1g7/2) −0.033 7719
4 2, −4 (2f7/2) −0.049 2150 1, 5 (1h9/2) −0.049 2150

which is in agreement with equation (36) of [11]. Substituting the values of ε1, ε2 and ε3 into
equation (33), the energy eigenvalue equation for Enk can be immediately obtained:(

2DẼnk + γD1√
DẼnk − γD2

+ 2
√

(Ẽnk − C − 2µ)Ẽnk − D0γ

)2

+ (2n + 1)2a2 = 0, (34)

where Ẽnk = µ + C − Enk . As Berkdemir [11] pointed out, there are only ‘negative’ energy
states, and no bound states with positive energy exist. Imposing appropriate values for the
parameters Di (i = 0, 1, 2), C,D and a, we can use any of the equations from (32) to (34)
to calculate the negative bound state energies of the pseudospin-symmetry Morse potential
for a diatomic molecule. As an example, the numerical solution of equations (32)–(34) with
parameters D = 5.0 fm−1, r0 = 2.408 73 fm, a = 0.988 879 fm, µ = 10.0 fm−1,D0 =
0.269 28,D1 = 0.621 78 and D2 = 0.108 93 is presented in table 1. We must point out that
equations (32) and (33) are both correct energy eigenvalue equations, yet equation (34) is
not the same as equation (37) of [11]. The data in table 1 are different from that given in
table 1 of that paper. Our equation (33), which is their equation (36), does not agree with their
equation (37)

4. Discussion

In this section we give some explanation about this study. First, from table 1 we see that
the Dirac eigenstate 1S1/2 with n = 1 and k = −1 has a partner which is denoted by 0d3/2

with n − 1 = 0 and k = 2. The two eigenstates, given in the same line of table 1, are
pseudospin partners to each other. This is due to the fact that Enk is affected by k only through
γ = k(k − 1)

/
r2

0 . Because equation (34) is invariant under the mapping k → −k + 1, any
Dirac eigenstate with n and k will have a partner with n and 1 − k, that is to say, the eigenstate
with En,k has a pseudospin partner with En,1−k .

Second, if we set x = 0 in equation (11), that is to say r = r0, we get D0 + D1 + D2 = 1.
This relation can also be obtained from equation (12). Furthermore, from equation (12) we
know that Di (i = 0, 1, 2) is determined only by α, so, with fixed D,µ,C, n and k, we only
need to specify any two of r0, a and α to determine an eigenstate.

Third, perhaps because of a little mistake in the calculation from equation (36) to
equation (37) in [11], the author concluded that there is only a negative bound state solution
for C � −10 fm−1, and for C > −10 fm−1 there are no bound state solutions for the exact
pseudospin symmetry Morse potential. Contrarily, our calculation shows that in the case of
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Table 2. Relativistic energy eigenvalues in units of fm−1 of the pseudospin-symmetry Morse
potential using the exact quantization rule method for various values of n and k. For a special case,
C = 0.

l̃ n, k < 0 (l, j) En,k<0 n − 1, k > 0 (l + 2, j + 1) En−1,k>0

1 1, −1 (1s1/2) −0.006 4899 0, 2 (0d3/2) −0.006 4899
2 1, −2 (1p1/2) −0.016 1835 0, 3 (0f5/2) −0.016 1835
3 1, −3 (1d1/2) −0.026 2288 0, 4 (0g7/2) −0.026 2288
4 1, −4 (1f1/2) −0.034 3246 0, 5 (0h9/2) −0.034 3246
1 2, −1 (2s1/2) −0.007 0456 1, 2 (1d3/2) −0.007 0456
2 2, −2 (2p3/2) −0.019 2957 1, 3 (1f5/2) −0.019 2957
3 2, −3 (2d5/2) −0.034 7132 1, 4 (1g7/2) −0.034 7132
4 2, −4 (2f7/2) −0.051 5127 1, 5 (1h9/2) −0.051 5127

C > −10 fm−1, some negative bound state solutions for the exact pseudospin symmetry
Morse potential can still exist. As an example, we tabulate the numerical solution of
equations (32)–(34) in table 2, with the same parameters D, r0, a, µ,D0,D1 and D2 as in
table 1, but for C = 0.

5. Conclusions

By using the exact quantization rule we have shown an alternative method to obtain
the energy eigenvalues of the Dirac equation for the rotational Morse potential with the
Pekeris approximation. The main results of this paper are the energy eigenvalues given by
equations (32)–(34). Some details of the energy eigenvalues are discussed. We stress that
some negative bound state solutions for the exact pseudospin symmetry Morse potential can
still exist when C > −10 fm−1. The advantage of the exact quantization rule is that it gives the
eigenvalues through the calculation of two integrations and solving of the resulting algebraic
equation. The method presented here is a systematic one and is very efficient and practical. It is
worth extending this method to the solutions of other non-relativistic or relativistic interaction
problems.
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